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Computation of the Bounding Suxrface of a Dipole Field
in a Plasma by a Moment Technique

Jarpes E, Midgley and Leverett Davis Jr. :
California Institute of Technolo Pasadena, California

Abstract. The cavity formed by a plasma-free dipole magnetic
field in a field-free staticnary plasma is determined by a numerical
nethod. The shape of the cavity is found by requiring that each multipole
moment of the surface currents just cancel the corréspond:i.ug moment due to
the source of the field. For a dipole source of mcment M in a plasma
whose pressure is p , there is a cusp on thé polar ax:.'Ls at 0.64 times
the equatorial radius, which is 0.82615 Ml/ 3p-:"/ 6. The relative accuracy
of Beard's approximate method of solution is exemined and found to be poor:
A way is given in which the moment method might be used to obtain the shape

of the cavity produced in the solar wind by the earth's magnetic field.

1. Introduction. It has long been suggested [ Chapman and Ferraro,

1930; Ferraro, 1952] that there exists a flow of plasma from the sun which,

' because of its conductivity, compresses the earth's magnetic field, confin-

ing it to a cavity whose shape is yet to be determined. Vhen the plasma
first arrives, there will of course be a transient disturbance, but we
shall assume that if the flow is steady this is followed by a steady state
in which the geomagnetic field and the plasma occupy ‘different regions of
space. Later the plasma will d:;ffuse into the magnetic field as a result
of its finite conductivity and any instabilities there may be. However, we
will consider here only the initial steady staté without penetration and we

will ignore the question of stebility.
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Since the preblem was first suggested numerous attempis have been
mzde to deduce the shape of the cavitiy, but no accurate solution has yet
been obtained. However, similar, but simpler, prcblems may be investigated
and the results obtained may heve come geophysical significance in their
own right. They also assist in developing techniques for an attack on
the main problem and provide tests for the relative accuracy of various
proposed aprroximetion methods. For exémple, Dunaéz {19611 hes given an
sclution of the case of a tvo dimensional dipole normal to a uniform
wind. Apother useful case is the three dimenéional dipole surrounded by
& staticnary vniform pressure plasme., We treat this latter problem below,
giving in section 2 the general moment technique in a form which it is
hoped can be generalized to the problem of a dipole in a steady plasma
flow, and in section 3 the specific solution. In section 4 the results
of this method are cempared with the results which are obtained by using

approximate boundary ccnc¢t-on due to Bsaxd [}960} .

411 of these problems invclve two regions, separated by a surface
2t which an approprizte boundery condition applies. It is generally
agreed f eard, 10607 that in the geomegnetic situation this surface is
actuallv a currert shezath cf-‘u order of a kilometer think, and that
this thickress cen be neglected. The immer region contains only vacuum
ragretic field with specified sources (1n cur case a dipole at the or1~1n)
though an extensicn to allow for the presence of plasma could presumably
Ye devised. Thne outer region contains only plasma, and thus it is in

effect a perfect diamagnetic. Once the surface is specified, it is a




streigntforwerd problem in eleciromegnetic thesory to determine what the

¢ inside the caviiy vsing the boundary condition that all
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space cutside the cavity‘is filled witk a diamegnetic. ¥With the surface
specified, it should also be = streightforward problem, given the plasma
action and pressure at infirity, to determine the normel pressure p of
the plasma at each point on the surface. Then the boundary condition
which must be satisfied by the true (or self-consiétent) surface {IPerraro,
195“} ie that this plasma pressure must be bzlenced by the magnetic

v

pressure of the field, B , just inside the surface. In Gaussian units:

= 22 14
=7 En (1)

'
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Ir. generzl, if the surface is not lmown, it is possible to obiain it oy
by malddng successive trials, itezting eesch ageinst condition (1) to determine
its accuracy. There is always ccnsiderable difficﬁlty, however, in deter—
mining just how to change the surface each tizme in crder to reduce the

repancy in (1). Also the siraightforward problem in electromagnetic

~
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theory of determining the field inside the caviily from the dismagnetic
boundary conditicn esctually involves e lengthly muzerical solution of 2
partial @ifferentizl eguaticn thrcoughout the cavity.

This partial differentisl ecuation can be avoided and the problem
can be greatly simplified by neking use of the surface currents, J , on
the boundary. Since the magretic field is zero ocutside, a2 well known
boundary conditicn prescribes that J rmust be just 3/4x and that 3

is perpendicular to ;5 s Using this condition, (1) becones

p=23IJ2



Again starting with a trial surface, p is calculated at each point of

the surface from conditions in the plasma. This is trivial for fhe case

of the stationary uniform pressure plasms considered here. For the sero
temperature solar wind problem to be considered subsequently, we shall
assume elastic reflection of noninteracting pasrticles, in whicl; caée P
veries as coszﬁl vhere Y is the angle between the inward normal to the
surface ané the wind direction. With p aetemined, equation (2) deter—
‘mines the magnitude of J ot each point on the surface. One then uses
symzeiry and the equation of coﬁtinuity to det;armine, if possible, the
vector surface current everywhere. (If this fails, an altermative
approach is to reverse these two steps, specifying a trial current :
distribution and constructing the surface so that (2) is satisfied.)
Knowing the surface current, it is then 2 simple matter to calculate

from a surface integral ihe vmagnetic field anywhere to determine whether
it satisfies the boundary conditions. Thus if just inside the surface the
field is everyvwhere tangent to the surface, has the magnitude 4 nJ

and is perpendicular to J , then the boundary condition is satisfied.
Duncey [3.961] in his iwo dimensional solution used such a boundary
condition; but was able to usé complex veriable theory and got the exact
nagnetic field and boundary by a conformal transformetion. Beard [1960]
cbizins a differential equation for an approximation to the surface by
using the foliowing approximate boundary condition. He requires that at
gach point on the surface the tangential component of the unperturbed field
is jusi half of the discontimuity, 4 nJ = (8 rzé)‘l’ , Tequired by the

surface curreant deduced from the plasma pressure. Thus he assumes that




he tangential component cf the field produced by 2ll the surface current

ie precicely egqual o that due to the socurces, and that the noémal components
due to the two csuses are precisely egual and opsosite. This assumption is
only roughly true and his result is therefore gquite approximale. Ferrero

uses essentislly the same approrimate boundary condition to get a

L.

2, “re moment technicue. Actually it is very difficult {o ccxpute

rurerically the value cf the magnetic field neer the surface because the
integrand of the integral used diverges as the field point considered

approaches the surface. However, in practice it is not necessary to con-:

dition is available. It is that the magnetic field be zerc everywhere
catside the surface, and z cenditicn eguivalent to this is that all the
zultinole mozents of the source be zeroc. Thus the procedure used is to
zssume a functional form for the surface with a large number of undetermined

paramcters. & series of sets of the perexeters ars chosen, each cetv deiining

e irial surisce. TFor ecch surface the current distribution and the rulitipole

mozents of this current disiribution azre caleulated. hese moments zre added
to those of ithe Fived scurces and the peramsters are 50 adjusted that all the

resultent multipole moments are zero. A convenient way to do this for &

ived dipole scurce is to calculzte the rate of change of each of the moments
with resrect to each of the perameters. UWith this information a set of linezr
equetions is constructed and solved to determine how each of the parameters

sheuld be o..caged in order to reduce the magnitude of 21l the noments due to
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the surfzce currents except the dipole mement. This process is iterated
until a surface is obtained vhose surfzce currents have cnly e dipole

nmement. If the

n

urfece is then scaled so that this dipole is equal and
opposite to the earih's dipole, then the solution is obtained, Of course
with only a finite number of parameters oanly a finite number of momenis

an be reduced to zero, but only the lower mements contrivute much to the
field. If cne requires the surface tc be particulerly accurate in certain
regions, cne cen consider fever nomenits and also reguire the field to be

zero at selected points near these regions.  Agein, these points cannot

te oo near, for reassons of convergence,

3« Uniferm rressgure case. Consider 2 magnetic dipole surrounded .

by a stationary plasme of uniforz prescure, and let the standard spherical

polar coordinates be

(,8,¢ ) = (pr Fé. -, &) (3)

&)

r is a convenient unit of length, chosen to be the radius in the equational

vlane to the point vhere the megretic pressure of the undisturbed dipole

field eguals the gas pressurs. Thus
- .
3 - (4)
I‘o = M i{8%xn p) 2
whers ¥ is the moment of the &ipole, Clearly the bounding surface has axial

R
sycmetry and the surface current is ,ﬂ = (p/2 n )? ;%5, having the same
magnitude everyvhere on the surfece. This is the main simplification of
this case cover *he case of the wind, where both tbe pnegnitude and direction

o~

of the current vary in & 4ifficult menmer over the surface.
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L o . f-‘-(rk))
=t oz, be a2 roint outside the surfeoce, vwhere we requireAthe
vector potvential of the magnetic fieldJ ard let r be a point

-

cn the surlace, Then in Gaussian units for a general surface:

J (r} asS
.ﬁ; = ~o~
- For our symmetrical case we muy expand in Legendre polyncmizls and

integrate over ¢ +o obtain

4 .
_ vy ”n+2 _,,1161.7‘
Az) = g5 2= (2ap)? 2™ Pllem«) )

n=- a{nrl) B =
: 2
whers
Ie%2 48 , 1
n-1 2 a 21"' 1 .
In = p Lr? + (Eo_t) j < Pn(s:.n &) coset é« (7)

. . ; 0 .
The In are preporiional to the 27— pole moments of the surface current,

SO we now require that F(d) te so chossn thet all the In except Il

are zero and that the dincle mozent of the surface curreais just cancels

that of the source at the crigin. Since the vector potential of a dipole
N + T3 2 --2 Dl 1 s : ) : S s

of strength K is & 4 4y al(sm & 2), corparison with (6) and elimination

of T, by means of (4) gives

i = 4 (8)

The cemputation was carried out for a trisl function of the form

N
p=0[l-2":. g “2% (9)
s =1 -
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At first we set C = 1 znd put nc restricticn on the value of Il'

Symmetry agein guarantees that In =0 for n even, so we need to

consider In only for n = 3,5;7, e o o 28+ 1, It is an easy matter to
differentiate the In under the integral sign and obtain enalytic expressions
for the rates of change of the I n with respect to the various c e Bénce
thie Generalized Newton's H‘ethod was used to determine the cg which reduced
the I, tozero. Finally I, is made equal to 4. by adjusting C, which is
seen to be the egquatoriel radius. The computation was carried out on a
Burrocuzghs 220 computer for various vaiues of ¥ up to seven. For tkre

case N =7 t{he nunmerical results are given in Table 1 an:i the resulting

cross section is plotted in Figure 1,

TABLE 1.

Ceefficients in the Equation for the Surface

C = 1.433C5

¢, = 0.12003¢
c. = 0.CC4180
2
c3 = 0,001085
e, = ~0.020200
c. = 0.000597
CCg = -0.000326
c.7 = 0.000094

The radius in the equetorial plane is 1.41395 ro, the irtersection on

_ the dipole sxis is 0.899 T and the maxipum height is 1.073 Toe The
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eguzterial radius is curiously close to (2 T If this should be exact,
it might indicete thet the irue surface could be given by an unexpectly
simple expression which coulé presumebly be derived, but this has not been
rursued,

‘It is true that at the pole the last few terms of equation (9)
are of the order of 7% of the first term but this does not indicate an
'error of that crder there. The coefficients in Table 1 are not the first
seven terzs in the power series erxpension of the true surface. They are

-
1

the ccefficients of the polymomial of degree fourteen whick most clessly
approximates the téue surface. Yz have two reazsons for believing that
the solution is very accurate evea near the pole. First, when the ccmputation
vas carried ocut with only four perameters, the radius of the cggputed sugiace
neer X = 90° , where agreement was worst, was only about one percent greater
hen the corresponding radius of the seven parameter surface., Second,

when ¢ was changed so as to decrease the radius to the surface by only

0.1% &t the pole, the residuel fields st distances greater than O.3r° outside
the surface (calculated es described in the test of the next section) were.
incréased by a factor of iten or mere. A mejor Teature of interest in this
computation, in sddition to providing a2 test of the momeni technique, is

that it indicates that the surface very definitely has cusps at the poles'

znd that these cusps do rot go clear to the crigin as has been suggested, but
rather interesect the sxis at 2 finite distance. The cusps undoubtedly
interesect the axis tangentially in reality, but suck 2 surface could not

te reprosented by a polynomial with a2 finite number o terms such as ve have

used, It is of interest to note, however, thait the more parameters we used
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the steeper the angle of intersection was. It is ezsy to see that these
are the results that should be expected. Consider 2z cavity in a medium of
zero permeability. IF there were a finite angle between the surface and
the axis, the field theres would be zero, and if the cusp were at the dipole
the field would be infinite; either condition is inconsistent with equation
(2).
X

IT we define the field just inside the surface to be Bs = (87 p)-f,

then it is & simple matter to eee that the change in the fielgd, ABJ at the

origin due to the surface currentsis

Xis

' Ltz 2 ar \2v%

AB = Bs} cos“X (1 + (rd“) )2 ax (10)
¢}

For a sphere the integral is just 7 /4, and for any other surface it would

be slightly grezter. For our surface it is 0.76933. Thus a 10 ¥ disturbance

in the gsomagnetic field at the earth " could arise from a sudden
=1 2
change of presszure of 2.52 x 10 10 dynes/cm” ca the surface (i.e. a particle

density times texmperature of 1,85 x 106 Ko/czn) c¢r a‘kiretic energy d'ensi?’y of

l.58 x ILO2 ev/cm3 R

’

/

W2 nave felt it desirable to

5 -~ - P 5
4, Cormpariscr with other resulis,

deviee = technicus for check*;ng the above colution that is essentially
independent of the methoé by which it was obtained. Sueh a check would
rrovide a better estimate of the accufacy of the solution than would an
exarination of the residusl noments and of the roundoff znd similar errors

in tke computation, and at the same tine it would show up any coding errors.

Of even greater importance, however, such a check could be applied to




soluticns obtainsd by cther metheds end thus afford an objective way of
estinating their relative accuracy. The mement technique forces the field
to go to zero o a very high order at large distances from the surface.
Other procedures vhich may be devised usually attempt to force the fie'd
to zero just outside the surface. Of course with the true soluiion the
field would be exactly zefo everyvhere outside the surfece. Thus it
-seems that a very reascneble test of any proposéd surface would be to
caeleulzte the field ocutside that surface at different distances from the
surface and in different directions. To be specific, we calculated (zt
verious radii along thevpolar axis and in the equatorial plane) the field
due to the surface, subtracted this field frcm the field of the dipole
located at the origin, and then divided the result by the dipole field.
This gives a number which would be zero everywhera outside the surface for
the tfue surface and would be one everywhere if the surface were removed
altogether, For our soluticn, where the two dipcie mozents are the sanme,
this test will clearly give zerc at large distances so the real test will
come at small distances. The real test of a surface derived by a process
vhich minimizes the field é? the surface may come at greater radii. The
cczputations for this test were carried cut on a Eurroughs 220 computer,
replacing the surface by ninety-eight current loops. Tre results of this
test for the moment surface are given in Tablg 2. The values on the poler
axis mazy be incorrect by as much as 5% due to truncetion error. The
truncation error wes removed from the equatcrial values by subtracting the

scluticen for a sphere with a cos& current veriation, which should

theoretically be zerc everywhere and which therefore equals the truncation
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) 2
. . de . M
or in full: E‘%“ +§-5°-< gr).(cosocg“ —2 sm«’g‘%ﬂg?] 811‘ p [l+ ( )] (12)

Call P(O) = @, and note that dp /det = 0 at = O by symmetry.
Inserting these values, and the value of T, from (4), into (12) one

obtains the relation
fP3 = 1 (13)

ard the differential egquation
. do )2 02,46 o}
E:osa( - 2sing ?a&j = ( e> Cl + (—Faﬁ)ﬂ (14)

¥hen equation (14) .is solved it gives 9(0‘)/ Po Then pe is

determined bty the condition that I, = 4. Since equetion (14) is of

1l
second degree there are two such solutions. The appropriate solutien is
plotted in Figure 1 and it is seen that it differs sigmificantly from
the mement technigue result near the pole. The result of the test applied
to this surface is also given in Table 2, Clearly the moment technigue
gives a net field outs'ide which is about cre thcusandth of that given
by the surface derived using Beard's boundery conditicn.

Tnere is also an int eresumg sidelight that can be gleaned from
these calculations. There has been some discussicn recently as to whether

the factor f which Beard assumes to be § should net be closer to 1/3.

From eguation (13) we se2 that in this three dimensicnel cese

=z =3
f = f'e’ = (1.39577)™° = 0.36775 (15)
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Since corpleting the sbove solubtions, we have learned tnat

S
Dr. Raloh J. Slubz {sce edjecent srticle] bhas been workinz on the
Sane problem with a quite dIiferent zpprosch. He has kindly provided
us with information on his sclution which lies asbout 0.04 T, insice
with ogy sarface

w surface at the equatar, agrees{to within the accuracy of the data
supplied us between latitudes of 20° ard 85° and lies sbout UL T,
cutside our surface just at the pole. Thus his surface disegrees iith

-

ours only in thal it is more cylindrical near the ecuator, His method
of calewlation mproximated the swface by many saall flzb triznates
rather then a siocoth function, so it has nob been clear how fo croiy
our test to it fairly. nowever, we dic tesit a smoolh surface waich
passed through the vertices of his triangies and concluded from the
residual fields in the equatorial plans thot owr swiace is carreet

. Tregton

in the equatorial weze Yo within a fow tenths of a percent. Tae
essentiel coineidencs, exceplt for a three percent disercpancy neor

the equator, of the surfaces cbiained by such different nuwmerical

nethods gives consicderzble confidence in both.

b
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